Nature and Biodiversity

What an Indian monsoon 130,000 years ago tells us about climate change today

A man looks at the rough sea as rainy clouds gather above during the monsoon period in Colombo, Sri Lanka May 21, 2018. REUTERS/Dinuka Liyanawatte     TPX IMAGES OF THE DAY - RC1636094500

Monsoon clouds gathering in Sri Lanka. Image: REUTERS/Dinuka Liyanawatte

Pallavi Anand
Lecturer in Ocean Biogeochemistry, , The Open University
Katrina Nilsson-Kerr
PhD Researcher in Climatology, , The Open University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Nature and Biodiversity?
The Big Picture
Explore and monitor how Future of the Environment is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of the Environment

The past may be a surprisingly useful guide for predicting responses to future climate change. This is especially important for places where extreme weather has been the norm for a long time, such as the Indian subcontinent. Being able to reliably predict summer monsoon rainfall is critical to plan for the devastating impact it can have on the 1.7 billion people who live in the region.

The onset of India’s summer monsoon is linked to heat differences between the warmer land and cooler ocean, which causes a shift in prevailing wind direction. Winds blow over the Indian Ocean, picking up moisture, which falls as rain over the subcontinent from June to September.

The monsoon season can bring drought and food shortages or severe flooding, depending on how much rain falls and in what duration. Understanding how the monsoon responded to an abrupt climate transition in the past can therefore help scientists better understand its behaviour in the future.

Maharashtra, India on May 28 2010, during the dry season.
Maharashtra, India on May 28 2010, during the dry season. Image: Arne Hückelheim/Wikipedia, CC BY

When we researched this weather system’s ancient past, we found it was highly sensitive to climate warming 130,000 years ago. Our new study published in Nature Geoscience showed that the Indian summer monsoon pulled heat and moisture into the northern hemisphere when Earth was entering a warmer climate around 130,000 years ago. This caused tropical wetlands to expand northwards – habitats that act as sources of methane, a greenhouse gas. This amplified global warming further and helped end the ice age.

The rate at which today’s climate is changing is unprecedented in the geological record, but our study shows how sensitive the Indian summer monsoon was during a global transition into warming in the past and may still be.

 The same view in Maharashtra, India on August 28 2010, during the monsoon season.
The same view in Maharashtra, India on August 28 2010, during the monsoon season. Image: Arne Hückelheim/Wikipedia, CC BY

The monsoon rains of yesteryear

Over the last one million years, the climate fluctuated between a cold glacial – known as an ice age – and a warm interglacial as the Earth’s position relative to the sun wobbled in its orbit. The last transition from an ice age into the warm climate of the present interglacial – known as the Holocene – occurred around 18,000 years ago. This period of Earth’s history is relatively well understood, but how Earth system processes responded to these climate changes deeper in time is still something of a mystery.

A recent expedition to drill deep into the ocean floor of the Bay of Bengal gave an opportunity to reconstruct past Indian monsoon behaviour over hundreds of years before the last ice age.

 Globigerinoides ruber– a species of microscopic foraminifera from the Indian Ocean.
Globigerinoides ruber– a species of microscopic foraminifera from the Indian Ocean. Image: Pallavi Anand,Author provided

Our study used these deep sea sediments from the northern Bay of Bengal to capture a direct signal of the Indian summer monsoon from 140,000 to 128,000 years ago, hidden in the fossilised shells of tiny microscopic creatures called foraminifera. These plankton species once lived in the upper ocean water column and captured the environmental conditions of the surrounding seawater in the chemical make up of their shells.

Have you read?

We detected the ocean surface water freshening from river discharge induced by the rains of the Indian summer monsoon from 140,000 to 128,000 years ago – a sign of the strengthening monsoon system. This occurred when the Earth was coming out of a glacial state and into the interglacial which occurred before the one we live in, separated by a single ice age. During this period – which we’ll refer to as the penultimate deglaciation – sea levels rose from six to nine metres worldwide.

Ice-core records show that Antarctica began to warm first during the penultimate deglaciation. Southern Hemisphere warming provided a source of heat and moisture which fuelled the strengthening of the Indian summer monsoon, as seen in our records of surface freshening and river runoff from the northern Bay of Bengal.

 Wetland in Leh Ladakh, India. The expansion of tropical wetlands further north released more methane to the atmosphere, accelerating global warming.
Wetland in Leh Ladakh, India. The expansion of tropical wetlands further north released more methane to the atmosphere, accelerating global warming. Image: WATHIT H/Shutterstock

During this warming period around 130,000 years ago, the Indian summer monsoon responded to southern hemisphere warming while the northern hemisphere and other monsoon systems, such as the East Asian summer monsoon – which affects modern day China, Japan and the Far East – remained in a glacial state.

The Indian summer monsoon pulled heat and moisture northwards, driving glacial melting in the northern hemisphere and helping tropical wetlands expand their range. These expanding tropical wetlands resulted in more methane release into the atmosphere which caused even more warming, setting changes in motion which ended the global ice age.

The Indian summer monsoon is an incredibly dynamic system. Though confined to the tropics, the system is sensitive to climatic conditions in both hemispheres. Due to its role in contributing to methane emissions, the Indian summer monsoon also has an outsize impact on the global climate. Monsoons should not be viewed in isolation, just as the polar ice sheets shouldn’t. Earth’s internal climate system is intrinsically linked and abrupt changes at one place can have significant consequences over time elsewhere.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Nature and BiodiversitySustainable DevelopmentClimate Action
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

What is Arbor Day and why is it important?

Dan Lambe

April 24, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum